Decay for the Kelvin–Voigt damped wave equation: Piecewise smooth damping
نویسندگان
چکیده
We study the energy decay rate of Kelvin–Voigt damped wave equation with piecewise smooth damping on multi-dimensional domain. Under suitable geometric assumptions support damping, we obtain optimal polynomial which turns out to be different from one-dimensional case studied in Liu and Rao [Z. Angew. Math. Phys. 56 (2005), no. 4, 630–644]. This is saturated by high quasi-modes localized optics rays hit interface along non-orthogonal neither tangential directions. The proof uses semi-classical analysis boundary value problems.
منابع مشابه
Achieving Arbitrarily Large Decay in the Damped Wave Equation
is referred to as the decay rate associated with a. If a is to be introduced in order to absorb an initial disturbance then one naturally wishes to strike upon that a with the least possible (most negative) decay rate. The mathematical attraction here lies in the oftnoted fact that, with respect to damping, ‘more is not better.’ More precisely, for constant a, the decay rate is not a decreasing...
متن کاملExponential decay of solutions of a nonlinearly damped wave equation
The issue of stablity of solutions to nonlinear wave equations has been addressed by many authors. So many results concerning energy decay have been established. Here in this paper we consider the following nonlinearly damped wave equation utt −∆u+ a(1 + |ut|)ut = bu|u|p−2, a, b > 0, in a bounded domain and show that, for suitably chosen initial data, the energy of the solution decays exponenti...
متن کاملDamping for the elastic wave equation
Résumé: Le but de ce projet est une investigation des techniques d’amortissement pour l’équation d’onde. Cette étude est intéressante tant du point de vue de la physique et que de l’analyse numérique. En effet l’amortissement apparâıt fréquemment dans les systèmes avec friction. Du point de vue mathématique, l’amortissement donne une meilleure régularité de l’équation élastique qui est importan...
متن کاملEnergy decay for the damped wave equation under a pressure condition
We establish the presence of a spectral gap near the real axis for the damped wave equation on a manifold with negative curvature. This results holds under a dynamical condition expressed by the negativity of a topological pressure with respect to the geodesic flow. As an application, we show an exponential decay of the energy for all initial data sufficiently regular. This decay is governed by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2022
ISSN: ['1469-7750', '0024-6107']
DOI: https://doi.org/10.1112/jlms.12580